skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hammack, Rebekah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We are investigating factors that influence elementary teachers’ professional learning (PL) in science and engineering. The intervention and ongoing supports are offered at a distance to participants teaching grades 3-5 in rural school districts. Overarching research objectives include examining: (1) the impacts of online science and engineering PL; (2) the effectiveness of modest supports on the sustainability of PL outcomes; and (3) the changes to teachers’ engineering instructional practices. 
    more » « less
    Free, publicly-accessible full text available June 9, 2026
  2. Engineering Structured Poster Session: During these 75-minute concurrent sessions, up to 12 presenting projects will share information about their work related to engineering education with each other and with attendees interested in the topic. Following brief introductions, interactive poster presentation and viewing occured in two rounds, and the session concluded with facilitated discussion across all projects. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  3. To deliver instruction consistent with the Next Generation Science Standards (NGSS), especially with the inclusion of engineering, teachers need a high level of self-efficacy. Professional learning can foster self-efficacy, but short-term interventions have been found to have a limited impact on teachers’ instructional practices. The present study examines survey data collected from elementary teachers who were participating in a year-long NGSS-aligned professional learning program that was extended by professional learning communities (PLCs) and other supports. Experts led a 5-day institute which modeled shifts called for by NGSS (e.g., equitable, discourse-rich, phenomena-based) and provided teachers with opportunities to experience next-generation instruction. Participants (n=150) were recruited from rural communities, so, being mindful of historic challenges with access to professional learning, the institute in summer 2023 and the PLC sessions were delivered online. Four surveys were administered during 2023-2024, including a pre-, immediate post-, and delayed post-intervention surveys that captured teachers’ self-efficacy and outcome expectations related to science and engineering teaching and learning (T-STEM). We found teachers pre-intervention responses were more favorable for science, initially, but significant growth in engineering occurred throughout the period of study. Importantly, we also found evidence that ongoing supports, like PLCs, helped to sustain professional learning outcomes. 
    more » « less
    Free, publicly-accessible full text available March 23, 2026
  4. Teachers in rural schools have consistently faced challenges in accessing high-quality professional learning (PL). Approximately 150 rural teachers in four states received intensive, online summer PL paired with a variety of Modest Supports throughout the following school year. We used Picciano’s multi-modal online educational model in characterizing the online summer PL and to evaluate the effectiveness of the Modest Supports. End-of-year surveys and interviews with teachers asked about their experiences with and perceptions of the Modest Supports. Initial descriptive statistics and thematic analysis found that teachers reported using the collaborative Modest Supports much more frequently than others and that they were more helpful and created a sense of community within the project while also supporting their NGSS learning and implementation. 
    more » « less
    Free, publicly-accessible full text available April 24, 2026
  5. Teachers in small communities may be geographically isolated and have smaller collegial networks. Consequently, teachers in these settings may have limited exposure to contemporary strategies for engaging learners in science and engineering as suggested in the Next Generation Science Standards (NGSS). Thus, we provided a 5-day online PL experience and a year-long of modest supports (e.g., online professional learning community) to over 150 rural teachers from four states (CA, MT, ND, WY) to bridge the access gap and to enhance their instructional capabilities in teaching NGSS-aligned science and engineering lessons. Considering that the quality of the questions posed in a formative assessment impacts the quality of student thinking and what it reveals, we provided a formative assessment task, “Planning a Park” developed by Stanford NGSS Assessment Project (SNAP) and SCALE Science at WestEd, to participating teachers to implement in their classrooms. Teachers received online professional learning opportunities about the task before and after administering it in their classrooms. To understand their experiences with the task, we collected multiple data sources for triangulation, such as surveys about teachers’ preparedness to implement science lessons, teachers’ self-reported observations while delivering the task, their reflections about students’ performance, examples of student responses to the task, and interview responses from a sub-sample of teachers. As an initial analysis, we employed a descriptive coding process to capture teachers’ diverse experiences with the SCALE task (Saldaña, 2021). In this session, we will report rural teachers’ experiences with the formative assessment task that was provided as part of a year of modest supports. We believe this study will support the science education community, especially individuals preparing teachers to teach science and researchers on assessment, by sharing the benefits of implementing a formative assessment task during inservice teachers’ professional learning. 
    more » « less
    Free, publicly-accessible full text available January 18, 2026
  6. Many professional learning (PL) opportunities with inservice teachers often focus on enhancing their understanding of the nature of engineering and the work of engineers. However, few studies connect inservice teachers’ conceptualizations of science and engineering and how these inform their classroom practice. Therefore, this study explores inservice elementary teachers’ conceptions of teaching science and engineering and how they connect their understandings of these disciplines to classroom practice. We examined the breakout discussions of 11 inservice elementary teachers regarding five vignettes of science and engineering classroom activities in a completely online PL experience. We employed the Attending-Interpreting-Responding (AIR) Teacher Noticing Framework and followed a six-step thematic analysis process by Braun and Clark (2012). These steps included collaborative sense-making sessions to discuss the descriptive coding (Saldaña, 2021) generated during independent coding sessions. Our analysis revealed several consistent key (mis)conceptions about teaching science and engineering. Teachers often characterized engineering classroom activities as tasks where students should be building and solving a problem, while they characterized science as involving observation and learning content knowledge about a topic. When describing a vignette as engineering, teachers often used the words goal, problem, and purpose interchangeably. Additionally, we uncovered teachers’ misconceptions about science that do not align with the nature of science or science and engineering practices. This gap in how teachers make sense of classroom science and engineering tasks versus how they conceptualize science and engineering disciplines highlights a significant need to address in teacher education. 
    more » « less
    Free, publicly-accessible full text available January 17, 2026
  7. Indigenous populations, constituting 6.2% of the global population, face challenges in STEM education due to systemic barriers and limited exposure to science and engineering. Our research, part of a federally funded project, aimed to address these challenges by implementing Community-Based Engineering (CBE) education in an elementary school located on a Native American Reservation in the United States. In this paper, we used CBE as our theoretical framework situating engineering within the context of students' communities and cultures. Our participants included 15 students and two Native American teachers with varying teaching experience. We employed mixed methods and combined quantitative tools such as the Engineering Identity Development Scale and the Engineering Technology subscale of the S-STEM survey, with qualitative data from teacher and student interviews. Our analysis revealed significant changes in students' perceptions of engineering for their communities and their personal engineering identities after they engaged with CBE lessons. We also found that the cultural connections to community were evident in student interviews. Furthermore, teachers appreciated CBE and emphasized that these engineering lessons enrich their rich traditions and practices. This study highlights the effectiveness of CBE and demonstrates how engineering education can be more inclusive and resonant with Indigenous students. 
    more » « less
  8. Public agencies and other funding organizations have often defined rural in reference to “urban” and using parameters such as population density, access to cities, and distance to market areas. Using such definitions of rurality within the context of K-12 education as a way to support these systems is challenging because of the diverse geographic and socio-cultural identities of these places despite a common “rural” designation. This study aims to analyze elementary teachers’ perceptions of their school context and role within that context to better understand the diversity of what it means to be rural. Semi-structured interviews with 3rd–5th-grade teachers (n = 35) were used. Data sources also included identity and community walk slides created by these teachers. Structured interview prompts were tailored to these activities. A priori and emergent coding analyses were used to examine teachers’ conception of their rural context and their role within that context. The results show that rural, as defined by teachers, is a diverse and connected place in which diverse community assets support teachers in their instruction in unique ways. By better understanding the diversity of what it means to be rural, we begin to understand the ways in which context shapes experience and best determine how to support rural educational experiences for both teachers and students. 
    more » « less